赵宸,南京医科大学教授、博导,江苏省人民医院肿瘤科兼聘教授;荣获2023年度“江苏青年五四奖章”,入选中国科协青年人才托举工程,江苏特聘医学专家,江苏卫生创新团队。本科毕业于华盛顿圣路易斯大学,博士毕业于约翰霍普金斯医学院生物医学工程系,主要开发疾病-药物研究与临床试验中的QSP/定量系统药理建模技术,师从该领域国际领军人物Aleksander Popel教授。
近年来在疾病-药物转化建模方向发表高水平论文20余篇,其创新成果获国际同行高度评价,参编专著三部,主持国家自然科学基金、美国心脏协会基金、多个药物研发QSP合作项目等,并作为骨干/子课题负责人参与承担NIH R01、国家药监总局揭榜挂帅项目和省市级重大课题等共近20项。担任《Current Opinion in Pharmacology》,《Current Research in Pharmacology and Drug Discovery》,《中国药学杂志》,《药学进展》等多个期刊编委,参与编写CDE指导原则。
荣获约翰霍普金斯医学院2020年度青年研究者奖,长期担任美中医药开发协会(SAPA)总会执行理事。回国后任江苏省临床研究与循证医学中心PI,江苏省重大疾病药物靶标国际合作联合实验室PI,中国生物医药产业链创新与转化联盟副秘书长,江苏省药学会药物临床评价研究专委会副主委,中国药理学会定量药理专委会委员,中国医药创新促进会医药数字化及创新疗法专委会委员,江苏省药物研究与开发协会理事,DIA中国临床药理工作组成员等。任南京市青联第十六届委员。
Dr. Chen Zhao is currently a Professor at Nanjing Medical University, School of Pharmacy. He obtained his PhD in Biomedical Engineering from Johns Hopkins School of Medicine (advised by Dr. Aleksander Popel). Dr. Zhao’s research interests include quantitative systems pharmacology and systems biology type modeling and simulation with applications in model-informed drug discovery and development. He serves on the editorial board of several international journals, including Current Opinion in Pharmacology, Current Research in Pharmacology and Drug Discovery, Frontiers in Systems Biology.
Education
Johns Hopkins University School of Medicine, MS & PhD (Biomedical Engineering)
Washington University in St. Louis, BS (Biomedical Engineering)
研究方向(招收硕士、博士、博士后、科研助理):定量系统药理学以及系统生物学的机理性建模和模拟及相关转化研究;欢迎不同学科背景的同学加盟(计算或实验背景均可)
研究方向简介:机理性定量系统药理学/系统生物学的核心强调通过建立和分析数学模型,从而系统性和机理性地描述、模拟、研究和预测人类重大疾病中的复杂多层面生理病理过程。其中,机理性定量系统药理学(Quantitative Systems Pharmacology)这一概念在2011年被正式提出,其核心为借鉴经典系统生物学数学建模理念对普遍极简的药理学建模方法进行革新,尤其是在疾病的转化建模研究过程中,引入多层面的疾病发生、进展和药物作用机理并运用虚拟临床试验等方法加速针对重大疾病的药物开发和临床研究。基于以上创新方法的疾病数学模型平台在当下欧美顶尖药企和学术机构的前沿新药开发和转化研究中具有广泛且重要的应用价值和场景。
联系方式:zcshinchon4677@outlook.com 或chenzhao22@njmu.edu.cn
近五年部分论文(*通讯作者)
1. Zhou Y, Chu J, Zhao S, Li G, Fu Z, Zhang S, Gao X, Ma W, Shen K, Gao Y, Li W, Yin Y*, Zhao C*. (2024). Quantitative systems pharmacology modeling of HER2-positive metastatic breast cancer for translational efficacy evaluation and combination assessment across therapeutic modalities. Acta Pharmacologica Sinica, online ahead of print.
2. Zhang Y*, Qiang Y, Li H, Li G, Lu L, Dao M, Karniadakis GE, Popel AS*, Zhao C*. (2024). Signaling-biophysical modeling unravels mechanistic control of red blood cell phagocytosis by macrophages in sickle cell disease, PNAS Nexus, 3(2), pgae031.
3.赵宸*,李改玲,王亚宁.(2023).新药研发中的定量系统药理学(QSP)模型与虚拟临床试验:发展及前沿应用.药学学报,2023,58(11):3296-3310.
4.Zhao C*, Heuslein JL, Zhang Y, Annex BH, Popel AS. (2022). Dynamic multi-scale regulation of perfusion recovery in experimental peripheral arterial disease: a mechanistic computational model. JACC: Basic to Translational Science, 7(1), 28–50.
5. Wu P, Zhang H, Sun M, Mao S, He Q, Shi Y, Deng Y, Dong Z, Xu Q*, Zhao C*, Zhang W*, Sun B*. (2022). Manipulating Offense and Defense Signaling to Fight Cold Tumors with Carrier-Free Nanoassembly of Fluorinated Prodrug and siRNA. Advanced Materials, Sep;34(38):e2203019.
6. Wang H*, Zhao C, Santa-Maria CA, Emens LA, Popel AS. (2022) Dynamics of tumor-associated macrophages in a quantitative systems pharmacology model of immunotherapy in triple-negative breast cancer. iScience. 25(8):104702.
7. Zhang Y, Wang H, Oliveira RH, Zhao C*, Popel AS. (2022). Systems Biology of Angiogenesis Signaling: Computational Models and Omics. Wiley Interdisciplinary Reviews Mechanisms of Disease, 14(4), e1550.
8. Zhao C*, Medeiros TX, Sove RJ, Annex BH, Popel AS. (2021). A data-driven computational model enables integrative and mechanistic characterization of dynamic macrophage polarization. iScience, 24(2), 102112.
9. Sove RJ*, Jafarnejad M, Zhao C, Wang H, Ma H, Popel AS. (2020). QSP-IO: A quantitative systems pharmacology toolbox for mechanistic multi-scale modeling for immuno-oncology applications. CPT:Pharmacometrics & Systems Pharmacology, 9(9), 484–497.
10. Zhao C*, Mirando AC, Sove RJ, Medeiros TX, Annex BH, Popel AS. (2019). A mechanistic integrative computational model of macrophage polarization: Implications in human pathophysiology. PLoS Computational Biology, 15(11), e1007468.